Study on Implicit-Type Fractional Coupled System with Integral Boundary Conditions

نویسندگان

چکیده

This paper is concerned with a class of implicit-type coupled system integral boundary conditions involving Caputo fractional derivatives. First, the existence result solutions for considered obtained by means topological degree theory. Next, Ulam–Hyers stability and generalized are studied under some suitable assumptions. Finally, one example worked out to illustrate main results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions for a class of fractional differential coupled system with integral boundary value conditions

This paper investigates the existence of positive solutions for the following high-order nonlinear fractional differential boundary value problem (BVP, for short)  Dα 0+u(t) + f(t, v(t)) = 0, t ∈ (0, 1), Dα 0+v(t) + g(t, u(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ n− 1, j 6= 1, u′(1) = λ ∫ 1 0 u(t)dt, v′(1) = λ ∫ 1 0 v(t)dt, where n − 1 < α ≤ n, n ≥ 3, 0 ≤ λ < 2, Dα 0+ is the ...

متن کامل

Solvability for a coupled system of fractional differential equations with integral boundary conditions at resonance

By constructing suitable operators, we investigate the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions at resonance. Our analysis relies on the coincidence degree theory due to Mawhin. An example is given to illustrate our main result.

متن کامل

Solvability for a Coupled System of Fractional Differential Equations with Integral Boundary Conditions

The fractional calculus, an active branch of mathematical analysis, is as old as the classical calculus which we know today. In recent years, fractional differential equations have been studied by many researchers, ranging from the theoretical aspects of existence and uniqueness to the numerical methods for finding solutions. It is well known that fractional differential equations provide an ex...

متن کامل

Fractional-order boundary value problems with Katugampola fractional integral conditions

*Correspondence: [email protected] Department of Mathematics, Eastern Mediterranean University, Gazimagusa, Turkish Republic of Northern Cyprus Abstract In this paper, we study existence (uniqueness) of solutions for nonlinear fractional differential equations with Katugampola fractional integral conditions. Several fixed point theorems are used for sufficient conditions of existence (u...

متن کامل

Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions

This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone boundary value problem (SBVP, for short) with coupled integral boundary value conditions:  D0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1), D0+v(t) + λg(t,u(t), v(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, j = 0, 1, 2, · · · ,n− 2, Dα−1 0+ u(1) = λ1 ∫η1 0 v(t)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9040300